Parallel dynamics for an extremely diluted neural network

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 251009
(http://iopscience.iop.org/0305-4470/25/4/034)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.59
The article was downloaded on 01/06/2010 at 17:56

Please note that terms and conditions apply.

COMMENT

Parallel dynamics for an extremely diluted neural network

A E Patrick $\dagger \S$ and V A Zagrebnov $\ddagger \S$
\dagger School of Theoretical Physics, DIAS, 10 Burlington Road, Dublin 4, Ireland \ddagger Instituut voor Theoretiscle Fysica, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium

Received 15 August 1991

Abstract

We revise our formula for the main overlap evolution at $t=3$ generated by the parallet dynamics in the symmetric extremely diluted neural network. We show that for $t \geqslant 3$ correlations between the Gaussian and the Bernoulli's 'memory-like' noises have to be taken into account. To derive the exact formula for $t=3$ we use our previously developed truncated dynamics method.

In our paper [1] we claimed that the recursion relation (27)* (hereafter * denotes formulae from [1]) gives an exact formula for the evolution of the main overlap for parallel dynamics in the extremely diluted (symmetric) neural network. The last step in our calculations (transition from (26)* to (27)*) was incorrect: the 'memory-like' term $\xi_{i}^{(q)} s_{i}(t=1) g(t=2)$ and Gaussian noise $\sqrt{\alpha} \mathcal{N}(0,1)$ are correlated. The simplest way to take this correlation into account is as follows.

Let us represent the Gaussian part of the noise in (26)* (or in (25)*) by using the 'truncated dynamics' [2]; then by definition (11)* and equations (21)*, (23)*, (25)*, we get

$$
\begin{align*}
& ‘ \alpha '=\lim \xi_{i}^{(q)} s_{i}(t=3)=' \alpha^{\prime}=\lim \operatorname{sgn}\left[m_{N}^{(q)}(t=2)+\xi_{i}^{(q)} s_{i}(t=1) g(t=2)\right. \\
& \tag{1}\\
& \left.\quad+\frac{1}{2 c} \xi_{i}^{(q)} \sum_{p(\neq q)}^{M} \xi_{i}^{(p)} \sum_{j \in I_{i}} \xi_{j}^{(p)} \tilde{s}_{j}^{p}(t=2)\right]
\end{align*}
$$

where we use the 'truncated dynamics':

$$
\begin{align*}
\tilde{s}_{j}^{p}(t=2)= & \operatorname{sgn}\left[\xi_{j}^{(q)} m_{N}^{(q)}(t=1)+\frac{1}{2 c} \xi_{j}^{(p)} \sum_{k \in I_{j} \backslash i} \xi_{k}^{(p)} s_{k}(t=1)\right. \\
& \left.+\frac{1}{2 c} \sum_{f(\neq p, q)}^{M} \xi_{j}^{(f)} \sum_{k \in I_{j}} \xi_{k}^{(f)} s_{k}(t=1)\right] \tag{2}
\end{align*}
$$

§ On leave of absence from the Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia.

Recall that for the 'memory-like' noise in (1) one has
$\xi_{i}^{(q)} s_{i}(t=1)=\operatorname{sgn}\left[m_{N}^{(q)}(0)+\frac{1}{2 c} \xi_{i}^{(q)} \sum_{p(\neq q)}^{M} \xi_{i}^{(p)} \sum_{j \in I_{i}} \xi_{j}^{(p)} s_{j}(t=0)\right]$.
Then it becomes clear that it is correlated with the 'Gaussian-like' noise in (1) because variables $s_{j}(t=0)$ in (3) and $\tilde{s}_{j}^{p}(t=2)$ in (1) are correlated. Remark that 'truncated dynamics' (2) leaves $\left\{\xi_{i}^{(p)} \xi_{j}^{(p)} \tilde{s}_{j}^{p}(t=2)\right\}_{j, p}$ to be uncorrelated.

Now let us define two subsets of I_{i} relevant to dynamics (2): $I_{i \pm}=\left\{j \in I_{i}\right.$: $\left.\tilde{s}_{j}^{p}(t=2) s_{j}(t=0)= \pm 1\right\}$. Then for the 'Gaussian-like' noise in (1) we get

$$
\begin{gather*}
‘ \alpha^{\prime}-\lim \left\{\frac{1}{2 c} \xi_{i}^{(q)} \sum_{p(\neq q)}^{M} \xi_{i}^{(p)}\left(\sum_{j \in I_{1,+}} \xi_{j}^{(p)} s_{j}(t=0)-\sum_{j \in I_{i,-}} \xi_{j}^{(p)} s_{j}(t=0)\right)\right\} \\
=\sqrt{\alpha p_{+}} \mathcal{N}_{+}(0,1)-\sqrt{\alpha p_{-}} \mathcal{N}_{-}(0,1) \tag{4}
\end{gather*}
$$

where $p_{ \pm}=\operatorname{Pr}\left\{\tilde{s}_{j}^{p}(t=2) s_{j}(t=0)= \pm 1\right\}$ and $\mathcal{N}_{ \pm}(0,1)$ are independent Gaussian noises with zero mean and variance 1 . Similarly we obtain for the noise in (3) that
$' \alpha '-\lim \left\{\frac{1}{2 c} \xi_{i}^{(q)} \sum_{p(\neq q)}^{M} \xi_{i}^{(p)} \sum_{j \in I_{i}} \xi_{j}^{(p)} s_{j}(t=0)\right\}=\sqrt{\alpha p_{+}} \mathcal{N}_{+}(0,1)+\sqrt{\alpha p_{-}} \mathcal{N}_{-}(0,1)$.

Now, using representations (4), (5) and equations (1), (2), one gets

$$
\begin{align*}
m^{(q)}(t=3)= & \mathbb{E}\left(\xi_{i}^{(q)} s_{i}(t=3)\right) \\
= & \frac{1}{2 \pi} \int_{-\infty}^{+\infty} \int_{-\infty} \mathrm{d} x \mathrm{~d} y \exp \left[-\left(x^{2}+y^{2}\right) / 2\right] \operatorname{sgn}\left\{m^{(q)}(t=2)+g(t=2)\right. \\
& \left.\times \operatorname{sgn}\left[m^{(q)}(0)+\sqrt{\alpha p_{+}} x+\sqrt{\alpha p_{-}} y\right]+\sqrt{\alpha p_{+}} x-\sqrt{\alpha p_{-}} y\right\} \tag{6}
\end{align*}
$$

Formula (6) can be rewritten in the form

$$
\begin{align*}
m^{(q)}(t=3)= & \frac{1}{2 \sqrt{2 \pi \alpha}} \sum_{\sigma= \pm 1}\left[\int_{-\sigma g(t=2)-m^{(\varphi)}(t=2)}^{+\infty} \mathrm{d} x-\int_{-\infty}^{-\sigma g(t=2)-m^{(q)}(t=2)} \mathrm{d} x\right] \\
& \times \exp \left(-x^{2} / 2 \alpha\right)\left\{1+\sigma \operatorname{erf}\left[\frac{\left(p_{+}-p_{-}\right) x+m^{(q)}(t=0)}{2 \sqrt{\alpha p_{+} p_{-}}}\right]\right\} \tag{7}
\end{align*}
$$

To calculate the probabilities $p_{ \pm}$one has to use the representation (2) and equation (17)*. Then

$$
\begin{gather*}
\widetilde{s}_{j}^{p}(t=2) s_{j}(t=0)=‘ \alpha^{\prime}-\lim \operatorname{sgn}\left\{s_{j}(t=0) \xi_{j}^{(q)} m_{N}^{(q)}(t=1)+s_{j}(t=0) \frac{1}{2 c} \xi_{j}^{(p)}\right. \\
\left.\times \sum_{k \in I_{j} \backslash i} \xi_{k}^{(p)} s_{k}(t=1)+s_{j}(t=0) \xi_{j}^{(q)} v_{j, I_{j}}^{p, q}(t=1)\right\} \tag{8}
\end{gather*}
$$

where $v_{j . I_{j}}^{p, q}(t=1)$ is defined by (2). On the other hand by (17)* we have

$$
\begin{equation*}
‘ \alpha^{\prime}-\lim v_{j, l_{j}}^{p, q}(t=1) \stackrel{\mathrm{d}}{=} s_{j}(t=0) \xi_{j}^{(q)} g(t=1)+\sqrt{\alpha} \mathcal{N}(0,1) \tag{9}
\end{equation*}
$$

where Gaussian and 'memory-like' noises are independent. Therefore, by (8) and (9) we obtain

$$
\begin{equation*}
\tilde{s}_{j}^{p}(t=2) s_{j}(t=0)=\operatorname{sgn}\left\{s_{j}(t=0) \xi_{j}^{(q)} m^{(q)}(t=1)+g(t=1)+\sqrt{\alpha} \mathcal{N}(0,1)\right\} . \tag{10}
\end{equation*}
$$

Using (10) one gets

$$
\begin{align*}
& p_{+}=\operatorname{Pr}\left\{s_{j}(t=0) \xi_{j}^{(\sigma)} m^{(q)}(t=1)+g(t=1)+\sqrt{\alpha} \mathcal{N}(\overline{0}, 1)>0\right\} \\
& \quad=\frac{1}{2}\left\{1+\sum_{\sigma= \pm 1} \frac{1+\sigma m^{(q)}(0)}{2} \operatorname{erf}\left[\frac{\sigma m^{(q)}(t=1)+g(t=1)}{\sqrt{\alpha}}\right]\right\} \tag{11}
\end{align*}
$$

and $p_{-}=1-p_{+}$.
Substituting (11) in (7) gives the formula that (up to simplifications) coincides with the one for $t=3$ obtained recently for the same model by Watkin and Sherrington [3] using the Gardner-Derrida-Mottishaw method [4].

Acknowledgments

We would like to thank T L H Watkin and D Sherrington who pointed out to us the discrepancy between our formula for $m(t=3)$ [1] and their calculations [3]. We are indebted to them for their constructive criticism and for letting us know their results prior to publication.

References

[1] Patrick A E and Zagrebnov V A 1990 J. Phys. A: Math. Gcn. 23 L1323
[2] Patrick A E and Zagrebnov V A 1991 J. Phys. A: Math. Gen. 243413
[3] Watkin T L H and Sherrington D 1991 J. Phys. A: Math. Gen. 245427
[4] Gardner E, Derrida B and Mottishaw P 1987 J. Physique 48741

