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COMMENT

Parallel dynamics for an extremely diluted neural network
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Abstract. We revise our formuta for the main overlap evolulion at t = 3 generated by
the parallel dynamics in the symmetric extremely diluted neural network. We show that
for ¢t 2> 3 correlations between the Gaussian and the Bemoulli's ‘memory-like’ noises
have to be taken into account. To derive the exact formula for § = 3 we use our
previously developed truncated dynamics method.

In our paper [1] we claimed that the recursion relation (27)* (hereafter * denotes
formulae from [1]) gives an exact formula for the evolution of the main overlap for
parallel dynamics in the extremely diluted (symmetric) neural network. The last step
in our calculations (transition from (26} to (27)") was incorrect: the ‘memory-like’
term f,(.‘”s,-(t = 1)g(t = 2) and Gaussian noise /aN (0,1} are correlated. The
simplest way to take this correlation into account is as follows.

Let us represent the Gaussian part of the noise in (26)* (or in (25)*) by using the
‘truncated dynamics’ [2]; then by definition (11)* and equations (21)*, (23)", (25)%,
we get
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Recall that for the ‘memory-like’ noise in (1) one has

M
£D5s,(t =1) = sgn !mf{’,)(ﬂ) + 2—1555(]) Z £ z €§~”)s,-(t = 0)] . 3)

r(#9) jel;

Then it becomes clear that it is correlated with the ‘Gaussian-like’ noise in (1) because
variables s;(t = 0) in (3) and ‘s";.’(t = 2) in (1) are correlated. Remark that ‘truncated
dynamics’ (2) leaves {{E”)fg-”)fs'?(t = 2)};,, to be uncorrelated.

Now let us define two subsets of I; relevant to dynamics (2): I, = {7 € I, :
E’f(t = 2)s;(t =0) = £1}. Then for the ‘Gaussian-like’ noise in (1) we get
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where p, = Pr{5} P(t=2)s;(1=0)=+1} and N (0,1) are independem Gaussian
noises with zero mean and variance 1. Similarly we obtain for the noise in (3) that

f
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Now, using representations (4), {5) and equations (1), (2), one gets

m@(t = 3) = E(&V5,(t = 3))
+oa
= %ffd’l, dy exp[—{2* + y*) /2] sgn{m (¢t = 2) + g(t = 2)

x sgn[m{9(0) + \/ap, = + Jap_y] + /&P — \/aP_y}- (6)

Formula (6) can be rewritten in the form
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To calculate the probabilities p,. one has to use the representation (2) and equa-
tion (17}". Then

X exp(—-:cz/'la){l +crerf[ M
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where v’/ (= 1) is defined by (2). On the other hand by (17)" we have

‘o—tim v (1= 1)2s;(t = 0)6Vg(t = 1) + VaM(0,1) ©)

where Gaussian and ‘memory-like’ noises are independent, Therefore, by (8) and (9)
we obtain

Tt =2)5;(t = 0) = sgn{s; (1 = )M (1 = 1) + 9(t = 1) + VaN(0,1)}.
(10)

Using (10) one gets
pp =Pr{s;(t =)V mI(t = 1) + g(t = 1) + VaN(0,1) > 0}

1 1 4+ aml9)(0) am Wt =1)+g(t=1) }
=-<1+ - erf (11)
{ a'g:l::] 2 \/a

and p_=1-p +

Substituting (11) in (7) gives the formuia that {up to simpiifications) coincides with
the one for t = 3 obtained recently for the same model by Watkin and Sherrington
{3] using the Gardner—Derrida-Mottishaw method [4].
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